

17MAT21

Second Semester B.E. Degree Examination, Dec.2018/Jan.2019 **Engineering Mathematics – II**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing one full question from each module.

Module-1

1 a. Solve
$$y''' - y'' + 4y' - 4y = \sin h(2x + 3)$$
.

(06 Marks)

b. Solve
$$y'' + 2y' + y = 2x + x^2$$
.

(07 Marks)

c. Solve
$$(D^2 + 1)y = \tan x$$
 by method of variation of parameter.

(07 Marks)

2 a. Solve
$$(D^3 - 1)y = 3\cos 2x$$
, where $D = \frac{d}{dx}$.
b. Solve $y'' - 6y' + 9y = 7e^{-2x} - \log 2$.

(06 Marks)

b. Solve
$$y'' - 6y' + 9y = 7e^{-2x} - \log 2$$

(07 Marks)

c. Solve
$$y'' - 3y' + 2y = x^2 + e^x$$
 by the method of un-determined coefficients.

(07 Marks)

3 a. Solve
$$x^2y'' + xy' + 9y = 3x^2 + \sin(3\log x)$$
.

(06 Marks)

b. Solve
$$y \left(\frac{dy}{dx}\right)^2 + (x - y) \frac{dy}{dx} - x = 0$$
.

(07 Marks)

c. Solve
$$(px-y)(py+x) = 2p$$
 by reducing it into Cluiraut's form by taking $X = x^2$ and $Y = y^2$.

(07 Marks)

4 a. Solve
$$(3x+2)^2y'' + 3(3x+2)y' - 36y = 8x^2 + 4x + 1$$
.
b. Solve $p^2 + 2py \cot x - y^2 = 0$.

(06 Marks)

b. Solve
$$p^{2} + 2py \cot x - y^{2} = 0$$
.

(07 Marks)

c. Show that the equation
$$xp^2 + px - py + 1 - y = 0$$
 is Clairaut's equation and find its general and singular solution. (07 Marks)

Module-3

a. Form the partial differential equation of the equation $x + my + nz = \phi(x^2 + y^2 + z^2)$ by eliminating the arbitrary function. (06 Marks)

b. Solve $\frac{\partial^2 \mathbf{u}}{\partial x^2} = \mathbf{x} + \mathbf{y}$.

(07 Marks)

Derive the one dimensional heat equation $u_t = c^2 \cdot u_{xx}$

(07 Marks)

OR

Form the partial differential equation of the equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ by eliminating arbitrary constants. (06 Marks)

17MAT21

- b. Solve $\frac{\partial^2 z}{\partial y^2} = z$, given that z = 0 and $\frac{\partial z}{\partial y} = \sin x$ when y = 0. (07 Marks)
- Obtain the solution of one dimensional wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$ by the method of separation of variables for the positive constant. (07 Marks)

- Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dy dx dz.$ (06 Marks)
 - Evaluate $\int_{-\infty}^{1} \int_{-\infty}^{\sqrt{1-x^2}} y^2 dy dx$ by changing the order of integration. (07 Marks)
 - Derive the relation between Beta and Gamma function as $\beta(m,n) = \frac{\lceil m \cdot \rceil n}{\lceil m+n \rceil}$ (07 Marks)

- Evaluate $\int_{1}^{1} \int_{1-y^2}^{\sqrt{1-y^2}} y \, dx \, dy$ (06 Marks)
 - b. Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^2-x^2}} \sqrt{x^2+y^2} \, dy \, dx$ by changing into polar coordinates. (07 Marks)
 - c. Evaluate $\int_{0}^{\infty} \frac{dx}{1+x^4}$ by expressing in terms of beta function. (07 Marks)

- a. Find (i) $L[t\cos at]$ (ii) $L\left[\frac{\sin at}{t}\right]$. (06 Marks)
 - b. Find the Laplace transform of the full wave rectifier $f(t) = E \sin wt$, $0 < t < \frac{\pi}{w}$ with (07 Marks)
 - c. Solve $y'' + k^2y = 0$ given that y(0) = 2, y'(0) = 0 using Laplace transform. (07 Marks)

- Find Inverse Laplace transform of $\frac{s+2}{s^2(s+3)}$. (06 Marks)
 - Express the function

$$f(t) = \begin{cases} \cos t, & 0 < t < \tau \\ \sin t, & t > \pi \end{cases}$$

 $f(t) = \begin{cases} \cos t, & 0 < t < \pi \\ \sin t, & t > \pi \end{cases}$ in terms of unit step function and hence find its Laplace transform. (07 Marks)

Find Inverse Laplace transform of $\frac{1}{s(s^2 + a^2)}$ using convolution theorem. (07 Marks)